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Company Overview EPi}D

EPIR : R&D and Commercialization for
11-VI based

Material, Device and System
Technologies

K:' Pioneered molecular beam epitaxy (MBE) HgCdTe growth \
s Decades of experience with II-VI device fabrication and testing
% Headquartered in Bolingbrook, IL
» Commercial supplier of MBE materials and devices to a broad customer base
> Provider of material, focal plane arrays and sensors solutions
1. 1I-VI Material Manufacturing
» Grow II-VI materials to enable standard and custom imaging products
» HgCdTe on CdZnTe and Si-based substrates
2. Focal Plane Arrays (FPAs) Development and Production
» Standard and specialty array detectors, FPAs and sensors
3. R&D Solutions using II-VI Technology
» Material, device & system modeling, optimization, fabrication and testing
\ » Full process development to meet customer specifications /




EPIR: Materials and Devices Development Timeline EPIID
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Infrared Material Products

EPIR)

/

% EPIR, as a horizontally integrated domestic infrared material supplier, enables:

» Lower costs through the competitive nature of a horizontal supply chain

» Manufacturing flexibility through rapid prototyping

Material
CdTe
CdTe

HgCdTe
HgCdTe
HgCdTe

HgCdTe
HgCdTe
HgCdTe

Spectral Band

SWIR/CZT

SWIR/Si
MWIR/CZT

MWIR/Si
LWIR and MWIR/CZT
MWIR/Si

s*Also available:
* Custom HOT structures
* Avalanche photodiode structures
* Material for hyperspectral sensors
* nBn multilayers
* Two-color architectures

Size
3"
6"
Upto5cmx5cm

3”
Upto5cmx5

3”
Upto5cmx5cm
3”




Infrared Device and System Products

1) Standard format, high performance IRFPAs

% Low format (320 x 256, 256 x 256) - mature technology, limited market
% Medium format (640 x 512,512 x 512, 640 x 480) - large interest

% Large format (1024 x 1024, 1280 x 720) - emerging areas

Use FLIR and SBFP ROICs
Customers: Brimrose, Brandywine, Photon Etc, Xenics, JHU, St. John Optical,
[RCameras, Fibertek

2) Custom format detectors and IRFPAs
% Design, fabricate and integrate EPIR detectors and arrays with
customer electronics and ROICs
% Implement new concepts and designs: APD, two-color, nBn, HOT
Customers: Black Forest Engineering, Brown University, Northrop Grumman,

Raytheon, Lockheed Martin, Aselsan, Cyan, Imogin,, NASA Goddard, NASA JPL

28 mm

3) EOIR systems
% Integrate EPIR detectors and IRFPAs in custom EOIR system
(hyperspectral, polarization, active/passive, rad-hard)
Collaborate with system partners: Brimrose, Brandywine, Episensors
Current and potential customers: Army, NASA, DOE, Air Force, NVESD, BAE Systems,

Lockheed-Martin, Northrop-Grumman




EPIR Material in Orbit

EPIR)

¢ ASTRO-H built by a major international collaboration led by
Japan Aerospace Exploration Agency (JAXA) with over 70
contributing institutions in Japan, the US, Canada, and
Europe

¢ Soft X-ray Spectrometer (SXS) consists of the Soft X-ray

Telescope (SXT-S), the X-ray Calorimeter Spectrometer (XCS)

and the cooling system

BusimmessWire

A Berkshire Hathaway Company

L)

BOLINGBROOK 1l { On February 17, 2016, Hitomi. (also known as ASTRO-H) successiully

aunched from the Tanegashima Space Center in Kagoshima. Japan This sateliite contains a state-of-the-art
nstrument. a Soft X-ray Spectrometer (SXS), built around HgTe calorimeter tiles developed by EPIR Technologies, In
EPIR The instrument achleves unprecedented ener 1y resolution due 10 EPIR'S processes 10 significantly reduce the

thes specific heat EPIR'S technology provides a major contnbution to the mission. which

ed by JAXA (the Japan Aerospace Exploration Agency). and includes NASA

1 1S expecied 1o provide new Insights on the mystenes of t
through X-ravs The NASA-devel ped SXS sees X-ray Wors” with

unparalieied spectral resolution by measuring the heal produced

when X-ray photons strike the HgTe calonmeter tiles made by EPIR
Working with this outstanding team 10 send our technoiogy into
space for the first ime 1S an important miestone for EPIR, and we

oK forward to continuing 1o develop next generation imaging

lechnology for space observalion,” said Dr Sivalingam Sivananthar

Founder and Chairman of EPIR

EPIR Technologies, Inc. Proprietary Information

S an ntemahonal collaboratio

e distant galaxes and black holes. and

EPIR’ s HgTe material layers are the
detectors in the XCS
-XCS was fabricated with NASA Goddard team




From Design to FPAs EPIR

320x256 FPA
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EPIR)

Custom Detectors and Arrays
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Introduction: Goal, Specifications and Challenges EPIR)

Goal:

Fabrication of cost-efficient video cameras using infrared sensors that have high resistance
to radiation.

Specifications

* Target temperature: ~300°C

 Sensitive In the 5 um and longer spectral range

« Operate at standard frame rates (>25 frames/s)

 Resolutions of 640 x 480 pixel

Challenges:

Radiation tolerance for prolonged operation

 Under neutron fluxes (10° n cm s1) => short period of time
 Total absorbed dose of ~ 1MRad/yr. => Total dose (TD) effects

11




Displacement Damage Effects in HgCdTe and Related Materials

EPIR)

Neutrons cause FPA degradation mainly through displacement damage
effects. Damaged is characterized by Non-lonizing Energy Loss (NIEL).
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Project/R&D objectives EPIR)

1. HgCdTe material growth and characterization

2. Design devices and photomasks with sub-pixel pattern
optimization

3. Fabrication of detectors with improved radiation hardness
4. Integration of the detectors with radiation hardened ROIC

5. Packaging and testing detectors and cameras under neutron
flux

13




Growth and Characterization of HgCdTe Heterostructures EPIR)

1. Design double layer planar heterostructures (DLPH)
CdTe 1E+19 |
Hgo.7oCdo.3oTiAs(implant), p~10'7 cm

mmimy 7

<4—— Gradinag

€¢—— Hgo.77Cdo.23Te:In, n~1x10% ¢cm3 §
— Grading

Hgo.s5Cdo.asTe:In, n~1x10%° cmr

substrate

2. Precise composition and doping control (FTIR, Hall, SIMS) 1000x

3. Impurity reduction, low background doping:

4. Defect reduction (EPD, surface defect counting, HRXRD)

MBE growth of high-quality HgCdTe samples achieved. Material
tested under radiation flux.
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MBE Material growth and characterization EPIR)

HgCdTe hetero-structures designed and subsequently grown at EPIR using MBE
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Device Fabrication — Standard Process Epi’@

Align keys lithography and etch Implant window lithography Implantation and annealing
Contact metal deposition Passivation layer etch Passivation layer deposition >

Indium contact processing Indium bump deposition Hybridization and imaging test

* EPIR optimized process control for array fabrication
e Background limited dark current performance achieved
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Infrared Focal Plane Arrays at EPIR EPIR)

SWIR MWIR LWIR VLWIR

NIR-eSWIR \ MWIR

MWIR on CZT, 140K

LWIR on CZT, 85K

NIR on Si, Room Temperature

MWIR on Si, 110K

eSWIR on Si, 195K

[ Commercial grade devices in NIR to LWIR range ]
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Lateral Collection Diodes

EPIR)
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Device Fabrication Process Development Eﬁf@

« Mature capability to fabricate PECs and FPA
» Modify standard device geometry to enhance radiation hardness: multiple implants and additional metal
Interconnect to provide parallel connection between the multiple contacts on each pixel area

° a) CdTe passivation

« Small implantation/processing
windows require better control in

b) Photolithography, etch device processing

and metallization for p-
type contacts * Run trial processes to assess the

impact of these additional steps
on the overall device quality,

¢) Photolithography and
metallization for p-type
contacts interconnect

Optimized device fabrication processes for radiation
hardened detectors
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Mask Design for Radiation Hardened Arrays and Test Elements Eﬁ%@
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Simulation Results
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3D Model Construction for the MCNP Radiation Simulation

EPIR)

Stainless
Steel

FPA Chip
(HgCdTe
Si, In)
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2= Fermilab EPIR’s FPAs under neutron flux at FNAL EP%ID

10°®

10-8 L

Neutron/Incident Protron/MeV

1n-2 1nl 1n0 1n1
LU ERV)

¢ The maximum neutron energy was 66 MeV  Nedtron Energy (MeV)

- ? R prot ons/bucket : : 8 2,
s \/ (O . iwadited ata typica ate of 1x10° /e
' ! \/ aﬂ“‘arg“‘ @190"‘“) « Maximum rate ~2x10° n /cm?2-sec by mounting samples
k—Y—/ inside channel (without considering scattering)
8E12 protons/pulse « ~

igscante | B >8] wonsn e 35 days of exposure are r;eededzto reach the total dose of
]10t0 62 microsec mmlrmps (after target - @ 190 cm) 1 Mrad at the flux of 1x10 n/Cm 'S

ong

up to 62 micro-sec

~42 hours of exposure are needed to reach the same

T cumulative dose at the flux of 2x10° n/cm?:s
‘ﬂ_h [E14 protons/sec Dose rates were calculated based on the “theoretical” maximum in FNAL's

- A . . . . . . .
>3E8"3Utr0n5/fm Zsec standard configurations. Operational constraints may significantly lower rates
(after target - @ 190 ¢m, 15 Hz) i o . . . . .
- and maximum doses. We will investigate alternative configurations in order to
mitigate the operational reductions.

Pulses arrive at
~0to 15 Hz
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2= Fermilab

Approaches to increase neutron flux
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MWIR FPA Before and After Neutron Exposure

(b) after 1-hour neutron
exposure under flux 2.59x108
n/cm2s

(a) before neutron
exposure

MWIR_FPA_F:

Mounted in an IR camera
directly facing neutron beam.
Irradiated at 77K

’ [ | ’ {
(a) (b) (c)

(c) after one extra temperature cycling
from liquid nitrogen to room temperature

MWIR_FPA_B: Camera designed for high flux radiation environments
Mounted in a cryostat parallel . . Camera bottom view
with the beam direction. L %‘ Camera
Irradiated at 77K »'.' ‘j/ design with
i ;// small mirror

MWIR_FPA_L: (0)
Mounted behind a 1-inch-
thick polyethylene bar at the
edge of the neutron beam and
parallel to the beam.

Irradiated at room

Neutron Flux

Camera ) .
) Camera side view
design -
_with large
IR light .
/ mirror B Ge lens assembly

temperature.

(b)

* Mirror




Dark Current Histograms Before and After Neutron Exposure

EPIR)

Before exposure

After exposure
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(2.59%x108n/cm?s )degraded after irradiation
* Performing another temperature cycle can
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recover the original characteristics.

e MWIR FPAs mounted parallel to the neutron
flux show little change after neutron radiation

exposure.
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I-V Characterization (FPA_L) After Neutron Exposure EP%@
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NEDT/Detectivity Before and After Neutron Flux Exposure (~10%2 n/cmZ)Eﬁ%ID
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Summary EPIR)

e HgCdTe is the preferred material for use in high radiation environment applications. EPIR
has grown the HgCdTe with desired performances using MBE

e Lateral collection architectures could reduce the radiation induced dark current in
implantation-formed p-n junctions. Photomasks ( including e-masks) were designed.

e FPA device processing procedures were established at EPIR
e HgCdTe FPAs under irradiation showed minimal performance degradation

e MWIR FPAs directly facing 108 n/cm?s neutron flux got degraded performances after
irradiation. However, performing another temperature cycle recovered and restored the
original performance

e MWIR FPAs mounted parallel with neutron flux show little change after 2.59x10% n/cm?s
neutron flux irradiation, more than 2000 times higher than the typical high neutron flux
working environment with 10° n/cm?s, under a total dose ~10%% n/cm?.

e Working with Fermilab to further increase the flux to ensure the 1IMRad/year dose can be

tested in a relatively short period of time.
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